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Safety-Critical Manipulation for Collision-Free
Food Preparation

Andrew Singletary, William Guffey, Tamas G. Molnar, Ryan Sinnet, and Aaron D. Ames
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Planning

Abstract—Recent advances allow for the automation of food
preparation in high-throughput environments, yet the successful
deployment of these robots requires the planning and execution
of quick, robust, and ultimately collision-free behaviors. In this
work, we showcase a novel framework for modifying previously
generated trajectories of robotic manipulators in highly de-
tailed and dynamic collision environments using Control Barrier
Functions (CBFs). This method dynamically re-plans previously
validated behaviors in the presence of changing environments—
and does so in a computationally efficient manner. Moreover, the
approach provides rigorous safety guarantees of the resulting
trajectories, factoring in the true underlying dynamics of the
manipulator. This methodology is extensively validated on a full-
scale robotic manipulator in a real-world cooking environment,
and has resulted in substantial improvements in computation
time and robustness over re-planning.

I. INTRODUCTION

ROBOTICS and automation have great potential to trans-
form the food industry. In the domain of autonomous

cooking, robotic manipulators are used to pick up, deep
fry, and dispense the food in the dynamic environment of
the kitchen. This requires motion plans that are constantly
computed, hundreds or thousands of times per day, subject
to different environmental factors and initial conditions. Due
to the extremely complex collision environments and non-
trivial kinematics, highly non-linear planning algorithms such
as TrajOpt [1], CHOMP [2], and several in the OMPL library
[3] are used to plan joint trajectories offline, which the ma-
nipulator then executes. The vast majority of plans, however,
deviates only slightly from previously computed trajectories:
food baskets may move and deform slightly, workers may push
the equipment, or the robot may have slightly different con-
figuration initially. In these situations, rather than re-planning
a trajectory with the existing motion planner, we propose a
safety filtering method that produces collision-free trajectories
from existing reference trajectories in minimal computation
time, and with formal safety guarantees.
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Fig. 1: Miso Robotics ”Flippy2” robot frying food using our
proposed safety-critical framework for food preparation.

Minimally modifying existing trajectories is possible by op-
timization solvers that have warm-start or hot-start options for
resolving problems with slightly modified initial conditions.
In [4], the authors introduced a method for building a dataset
of motion plans that were used to warm-start the trajectory
generator to boost the success-rate of trajectories. Similarly,
in [5], the authors proposed a dataset of expert trajectories to
warm-start a Sequential Convex Programming (SCP) problem
for solving locally optimal trajectories rapidly. In [6], the
authors used incremental solvers to update trajectories via
Gaussian processes and factor graphs.

More generally, local planners have been used for decades
to modify rough, global trajectories under new collision con-
straints [7] or dynamic environments [8]. While many of
these works could certainly be modified to tackle the robotic
cooking problem, we believe that our approach’s balance of
simplicity, computational speed, and formality of resulting
safety guarantees makes it the best fit for the problem at hand.
Moreover, this algorithm can be run in real-time as a feedback
controller with dynamically updating environments, offering a
great deal of flexibility in implementation.

Our approach relies on control barrier functions (CBFs)
[9], that have been proven to provide an effective means of
enforcing safety on a wide variety of robotic systems [10], in-
cluding robotic manipulators [11]–[13]. In prior works, CBFs
were used as safety filters on desired velocity commands,
and obstacle representations were simplified. In this work,
safe velocity commands synthesized based on kinematics are
tracked by low-level controllers, and, unlike [11], a formal
proof is given that this method preserves safety for the full
dynamics of the robot. Moreover, it is achieved without
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requiring any knowledge of the dynamics, unlike [12], [13].
Furthermore, our work utilizes significantly more complex
obstacle representations and environments than previous works
involving CBFs, which facilitates practical implementation.

The primary contribution of this work is a rigorously tested
CBF-based filtering strategy that modifies previously gener-
ated trajectories to account for new collision constraints in a
provably safe manner. This strategy often eliminates the need
for re-planning in updated environments, saving computation
time and providing robust safety guarantees for the resulting
trajectory. We formally prove that these trajectories are not
only valid for the kinematic model of the manipulator, but also
for the underlying full-order dynamical system. The proposed
novel control algorithm is implemented in the MoveIt frame-
work [14], and applied to full-scale autonomous food-frying
in collaboration with Miso Robotics. The speed and efficacy
of this method are extensively explored in real-world cooking
environments, and the method has been shown to dramatically
increase planning speed and reliability.

The layout of this paper is as follows. In Section II, CBFs
are used to enforce safety on both the kinematic model of
the manipulator and the full dynamics. Section III formulates
distance functions in complex, real-world environments, which
are used in the context of CBFs for collision avoidance. Sec-
tion IV outlines the software implementation of the proposed
algorithm and the simulation environment. Lastly, Section
V shows the details and results of the extensive, real-world
hardware tests in the application of robotic cooking.

II. CONTROL BARRIER FUNCTIONS FOR SAFETY

A. Background: Control Barrier Functions
Consider a nonlinear system in control-affine form:

ẋ = f(x) + g(x)u, (1)

with state x ∈ Rk and control input u ∈ U ⊂ Rm to be
chosen from an admissible input set U ⊆ Rm. The functions
f : Rk → Rk and g : Rk → Rk×m describe the dynamics of
the system and are assumed to be Lipschitz continuous. Given
a Lipschitz continuous control law k : Rk → Rm, u = k(x)
we obtain the closed-loop dynamics:

ẋ = fcl(x) := f(x) + g(x)k(x). (2)

For the initial condition x(t0) = x0 ∈ Rk, this system has a
unique solution x(t) which we assume to exist for all t ≥ t0.

Consider a safe subset of the state-space S ⊂ Rk which
may represent, for example, the collision-free states of a
manipulator. To guarantee safety, we must ensure that the state
of the closed-loop system is kept within in S for all time. This
is formalized through the notion of set invariance.

Definition 1. The set S is forward invariant if the solution
x(t) of system (2) satisfies x(t) ∈ S , ∀t ≥ t0 for any x0 ∈ S .

Control barrier functions are a common tool to synthesize
controllers that enforce forward invariance for a given set S .

Definition 2 ([9]). Let S ⊂ Rk be defined as the 0-superlevel
set of a continuously differentiable function h : Rk → R:

S = {x ∈ Rk : h(x) ≥ 0}. (3)

Function h is a control barrier function (CBF) for (1) on S if
there exists an extended class K∞ function1 α such that for
all x ∈ S :

sup
u∈U

[
∂h

∂x
f(x) +

∂h

∂x
g(x)u

]
︸ ︷︷ ︸

ḣ(x,u)

≥ −α(h(x)), (4)

where ḣ(x, u) is the derivative of h(x) along system (1).

This definition yields the following key result for CBFs.

Theorem 1 ([9]). If h is a CBF for (1), then any locally
Lipschitz continuous controller k : Rk → Rm, u = k(x)
satisfying

ḣ(x, k(x)) ≥ −α(h(x))

renders the set S in (3) forward invariant for the system (2).

This condition can be incorporated into a quadratic program
(QP) to synthesize pointwise optimal and safe controllers, by
minimally modifying a desired but not necessarily safe input
udes(x, t) ∈ U to a safe input u∗(x, t) ∈ U :

u∗(x, t) = argmin
u∈U

∥u− udes(x, t)∥22

s.t. ḣ(x, u) ≥ −α(h(x)).
(5)

B. Application to Robotic Manipulators

Now let us use CBFs for controlling robotic manipulators
whose state x = (q, q̇) consists of the configuration q ∈ Rn

and the joint velocities q̇ ∈ Rn. For obstacle avoidance, we
define the safe set over the configuration space:

S = {q ∈ Rn : h(q) ≥ 0}, (6)

where h : Rn → R is continuously differentiable.
First, we consider the kinematics of robotic manipulators

with state q. In particular, we consider the system:

q̇ = v, (7)

wherein we assume direct control over the joint velocities via
the commanded velocity v ∈ Rn. We design a velocity v by
considering it as input to system (7) and guaranteeing safety by
CBFs. In Section II-C, it will be verified that safety guarantees
extend to the full dynamics when the commanded velocity is
tracked by a low-level controller.

Because each joint’s velocity is directly controlled accord-
ing to (7), we can simplify the QP shown in (5) to:

v∗(q, t) = argmin
v∈Rn

∥v − vdes(q, t)∥22

s.t.
∂h

∂q
v ≥ −αh(q),

(8)

where a desired velocity vdes(q, t) ∈ Rn is modified to a
safe velocity v∗(q, t) ∈ Rn. Note that we chose the extended
class K∞ function to be linear with constant gradient α > 0
for the sake of simpler exposition of the upcoming formulas.

1α : R → R is an extended class K∞ function if it is continuous, strictly
monotonically increasing, and satisfies α(0) = 0, limr→±∞ α(r) = ±∞.
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Fig. 2: Manipulator trajectory resulting from the control barrier
function detailed in Example 1. The tool is marked in yellow,
whereas the obstacle is shown in green.

Example 1. Consider a 6-degrees-of-freedom manipulator
(n = 6) with a spherical tool attachment of radius r1.
The manipulator is intended to track a desired joint velocity
vdes(q, t) and we wish to avoid a spherical region centered at
O ∈ R3 of radius r2. The CBF can be written as the distance
from the spherical tool to the sphere in the surroundings:

h(q) = ∥F (q)−O∥2 − (r1 + r2) (9)

=
√

(Fx −Ox)2 + (Fy −Oy)2 + (Fz −Oz)2 − (r1 + r2)

where F : R6 → R3 are the forward kinematics that give the
position of the end-effector in space, (Fx, Fy, Fz) = F (q).
The gradient of the CBF can be computed as:

∂h

∂q
=

∂h

∂F

∂F

∂q
=

1

∥F (q)−O∥2

Fx −Ox

Fy −Oy

Fz −Oz

T

J(q), (10)

where J : R6 → R3×R6, J(q) = ∂F
∂q is the top three rows of

the manipulator Jacobian. By enforcing the CBF-QP (8), we
obtain the path illustrated in Figure 2.

C. Safety Guarantees: from Kinematics to Dynamics

We now establish the first theoretic contribution of the
paper: we leverage the kinematics of the manipulator to guar-
antee safe behavior on the full-order dynamics. We establish
that tracking the safe velocity obtained from (8) results in
safety under reasonable conditions on the tracking controller.

Specifically, consider the full-order dynamics associated
with a robotic manipulator [15]:

D(q)q̇ + C(q, q̇)q̇ +G(q) = Bu, (11)

with q, q̇ ∈ Rn, D(q) ∈ Rn×n the inertia matrix, C(q, q̇) ∈
Rn×n the Coriolis matrix, and G(q) ∈ Rn the gravity vector.
Here we assume full actuation: the actuation matrix B ∈ Rn×n

is invertible and u ∈ Rn. Associated with these dynamics is a
control system of the form (1) with x = (q, q̇) (hence k = 2n).

Motivated by the approach in [16], we assume the exis-
tence of a “good” low-level velocity tracking controller on
the manipulator (as is common on industrial robots). [16]

only considered smooth velocity reference signals and smooth
CBFs to prove the safety of the full system, whereas in this
paper we address nonsmoothness in both of these aspects. This
is essential for operation in complicated collision environments
where nonsmoothness naturally arises.

Concretely, for a velocity command v∗(q, t) consider the
corresponding error in tracking this velocity:

ė = q̇ − v∗, (12)

and assume exponentially stable tracking.

Assumption 1. There exists a low-level controller u = k(x, t)
for the control system (1) obtained from (11) such that

∥ė(t)∥2 ≤Me−λt∥ė0∥2 (13)

holds for some M,λ > 0 along the solution x(t) of the closed-
loop system (2) with q(t0) = q0, q̇(t0) = q̇0 and ė(t0) = ė0.

Such exponentially stable tracking controller can be de-
signed, for example, by means of feedback linearization or
by using control Lyapunov functions. Under this assumption,
we have the first theoretic result of the paper.

Theorem 2. Consider the full-order dynamics of a robot
manipulator (11) expressed as the control system (1), and the
safe set S in (6). Assume that h has bounded gradient, i.e.,
there exists Ch > 0 s.t.

∥∥∥∂h
∂q

∥∥∥
2
≤ Ch for all q ∈ S . Let v∗(q, t)

be the safe velocity given by the QP (8), with corresponding
error in (12). If Assumption 1 holds with λ > α, safety is
achieved for the full-order dynamics (11) in that:

(q0, ė0) ∈ SM ⇒ q(t) ∈ S, ∀t ≥ t0, (14)

where:

SM =

{
(q, ė) ∈ R2n : h(q)− ChM

λ− α
∥ė∥2 ≥ 0

}
. (15)

Proof. First, we lower-bound ḣ(q, q̇) as follows:

ḣ(q, q̇) =
∂h

∂q
v∗ +

∂h

∂q
ė

≥ −αh(q)−
∥∥∥∥∂h∂q

∥∥∥∥
2

∥ė∥2

≥ −αh(q)− ChM∥ė0∥2e
−λt,

(16)

where we used (i) the definition (12) of the tracking error;
(ii) the constraint on the safe velocity in (8) and the Cauchy-
Schwartz inequality; and (iii) the upper bound Ch on ∥∂h∂q ∥2
and the upper bound (13) on the tracking error. Then, consider
the following continuous function y : R→ R:

y(t) =

(
h(q0)−

ChM∥ė0∥2
λ− α

)
e−αt +

ChM∥ė0∥2
λ− α

e−λt,

(17)
which satisfies:

ẏ(t) = −αy(t)− ChM∥ė0∥2e
−λt

y(t0) = h(q0).
(18)

For (q0, ė0) ∈ SM , we have y(t) ≥ 0, ∀t ≥ t0, and by the
comparison lemma we get:

h(q(t)) ≥ y(t) ≥ 0, ∀t ≥ t0, (19)

that implies q(t) ∈ S, ∀t ≥ t0. This completes the proof.
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III. DISTANCE FUNCTIONS AND SAFETY FILTERING

A. Collisions with Environment

In order to prevent collisions with the environment, we must
ensure that any point on the robot does not come into contact
with any point in the environment. However, unlike the simple
example before, we cannot rely on the robot and environment
being represented by simple spheres.

Let us denote the set of all points on the robot as A ⊂
R3, and the set of all points in the collision environment as
B ⊂ R3. To guarantee safety, we require that A∩B = ∅, thus
distance(A,B) > 0. More formally, distance is defined as:

distance(A,B) = inf
pA∈A
pB∈B

∥pA − pB∥2 , (20)

which can be computed in R3 using the GJK algorithm [17].
This notion gives a nonnegative distance, which could be

used as CBF. However, it is advantageous to define a CBF
that is negative in the event of collision, since CBFs may
also ensure that the boundary of the set S is re-approached if
h(x) < 0 [9]. In collision, penetration is defined as:

penetration(A,B) = inf
pA∈A

pB∈B

∥pA − pB∥2 , (21)

where B is the complement of B, or the set of points outside
the collision scene. Penetration is often computed using the
EPA algorithm [18].

These two functions can be combined to form the notion of
signed distance. Signed distance is typically written as

sd(A,B) = distance(A,B)− penetration(A,B). (22)

When the points pA and pB of the robot and the environment
are given in local coordinates, the following expression from
[1] can be utilized to compute the signed distance:

sdAB(q) = max
ñ∈R3

∥ñ∥2=1

min
pA∈A
pB∈B

ñ ·
(
FW
A (q)pA − FW

B pB
)
, (23)

where FW
A (q) ∈ R3×3 gives the pose of the robot in the world

frame that depends on the configuration q, and FW
B ∈ R3×3

gives the pose of the collision environment, i.e., FW
A (q)pA and

FW
B pB indicate points in the world frame.

B. Controller Synthesis with Control Barrier Functions

Given the signed distance, we propose the CBF candidate:

h(q) = sdAB(q), (24)

which defines the corresponding safe set of the system:

S = {q ∈ Rn : h(q) = sdAB(q) ≥ 0}. (25)

We remark that based on (23) h can be written as:

h(q) = n̂(q)⊤
(
FW
A (q)p̂A(q)− FW

B p̂B(q)
)
. (26)

Here n̂(q) and p̂A(q), p̂B(q) denote the direction and points
that maximize and minimize the expression in (23), respec-
tively, which depend on the configuration q.

It is important to note that in Euclidean space, signed
distance, h, is differentiable almost everywhere, and satisfies

∥∥∥ ∂h
∂pA

∥∥∥
2
= 1 [19]. There exists, however, a set of measure zero

where ∂h
∂q is discontinuous, since functions n̂ and p̂A, p̂B are

nonsmooth due to the max and min operators in (23). Since
the above framework requires continuously differentiable h,
we take special care in applying the theory, and we handle
nonsmoothness under the following construction.

First, we express the gradient of h as follows:

∂h

∂q
= n̂(q)⊤JA(q) + δ(q), (27)

where JA(q) =
∂FW

A

∂q p̂A(q) and δ(q) is the remainder term
associated with the derivatives of n̂, p̂A, and p̂B . Importantly,
note that n̂(q)⊤JA(q) is continuous, while δ(q) is discontin-
uous on a set of measure zero. The term n̂(q)⊤JA(q) can be
interpreted as a continuous approximation of ∂h

∂q , while the
approximation error δ(q) acts as disturbance. The size of the
disturbance is characterized by its essential supremum2:

∥δ∥∞ := ess sup
t≥t0

∥δ(q(t))∥2.

The points where h is not differentiable and δ is discontinuous
occur on a set of measure zero, and therefore do not impact
the essential supremum.

Now we incorporate the continuous approximation
n̂(q)⊤JA(q) in (27) into the control design. The following
result demonstrates that this approximation is sufficient to
maintain safety if the disturbance δ(q) is properly accounted
for (in an input-to-state safety (ISSf) context [20], [21]).

Proposition 1. Consider the kinematic model of a robotic
manipulator (7). Then, the controller expressed as the QP:

v∗(q, t) = argmin
v∈Rn

∥v − vdes(q, t)∥22 (28)

s.t. n̂(q)⊤JA(q)v ≥ −αh(q) + 2Jmaxq̇max,

with q̇max = ∥q̇∥∞ and Jmax = maxq∈Rn ∥JA(q)∥2, renders
the set S in (25) forward invariant for the resulting closed-
loop system. That is, the controller (28) keeps system (7) safe.

As such, collision-free behavior is enforced for the kine-
matic model of the manipulator, since the disturbance in (27)
is handled by the last term of (28). The feasibility of (28) in
singular configurations can be guaranteed by increasing α or
decreasing q̇max by reducing the desired speed.

Proof. First, we bound the essential supremum ∥δ∥∞ of the
disturbance. Recall that the points where h is not differentiable
are on a set of measure zero and do not impact the essential
supremum, thus we construct the bound on ∥δ∥∞ by picking
generic points where the h is differentiable. For an arbitrary
point on the robot pA ∈ A where h is differentiable:∥∥∥∥∂h∂q

∥∥∥∥
2

≤
∥∥∥∥ ∂h

∂pA

∥∥∥∥
2

∥∥∥∥∂pA∂q

∥∥∥∥
2

≤ 1 · Jmax.

(29)

2The function δ is essentially bounded if ∥δ(t)∥2 is bounded by a finite
number for almost all t ≥ t0 (i.e., ∥δ(t)∥2 is bounded except on a set of
measure zero). The quantity ∥δ∥∞ is then defined as the least such bound.
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This leads to the bound:

∥δ∥∞ =

∥∥∥∥∂h∂q − n̂(q)⊤JA(q)

∥∥∥∥
∞

≤
∥∥∥∥∂h∂q − n̂(q)⊤JA(q)

∥∥∥∥
2

≤
∥∥∥∥∂h∂q

∥∥∥∥
2

+
∥∥n̂(q)⊤JA(q)∥∥2

≤ Jmax + ∥JA(q)∥2 ≤ 2Jmax.

(30)

Then, we differentiate the CBF h in (24) and use (27):

ḣ(q, q̇) =
∂h

∂q
q̇ = n̂(q)⊤JA(q)q̇ + δ(q)q̇

≥ n̂(q)⊤JA(q)q̇ − ∥δ∥∞q̇max.

(31)

Substituting q̇ with the solution v∗(q, t) to (28) and incorpo-
rating the bound on ∥δ∥∞, the result is:

ḣ(q, v∗(q, t)) ≥ n̂(q)⊤JA(q)v
∗(q, t)− ∥δ∥∞q̇max

≥ −αh(q) + 2Jmaxq̇max − ∥δ∥∞q̇max

≥ −αh(q).
(32)

Thus, the condition in Theorem 1 holds almost everywhere
except on a set of measure zero, which yields that set S is
forward invariant based on Lemma 2 of [22] .

C. Self-collisions

Self-collisions are defined as collisions between any two
links of the robot that are not explicitly allowed to collide.
For these types of collisions, we still use the signed distance
function, but now FW

B also depends on the configuration q:

sdAB(q) = max
ñ∈R3

∥ñ∥2=1

min
pA∈A
pB∈B

ñ ·
(
FW
A (q)pA − FW

B (q)pB
)
. (33)

Thus, the gradient of h(q) = sdAB(q) becomes:

∂h

∂q
= n̂(q)⊤ (JA(q)− JB(q)) + δ(q). (34)

Proposition 1 can again be applied to self-collisions, with
slight modifications. The analysis results in the QP:

v∗(q, t) = argmin
v∈Rn

∥v − vdes(x, t)∥22 (35)

s.t. n̂(q)⊤ (JA(q)− JB(q)) v ≥ −αh(q) + 4Jmaxq̇max.

D. Safety Guarantees for the Full-Order Dynamics

The safety guarantees of Proposition 1 are valid for the
kinematic model (7). However, like in Theorem 2, the con-
trollers (28) and (35) lead to collision-free motion also on the
full-order dynamics—assuming good velocity tracking.

Theorem 3. Consider the full-order dynamics of a robot
manipulator (11) expressed as the control system (1), and the
safe set S in (25) associated with the signed distance sdAB(q)
between the robot and the environment in (23). Let v∗(q, t) be
the safe velocity given by the QP (28), with corresponding
error in (12). If Assumption 1 holds with λ > α, safety is
achieved for the full-order dynamics (11) in that:

(q0, ė0) ∈ SM ⇒ q(t) ∈ S, ∀t ≥ t0, (36)

where:

SM =

{
(q, ė) ∈ R2n : sdAB(q)−

JmaxM

λ− α
∥ė∥2 ≥ 0

}
.

(37)

Note that the selection of α must satisfy λ > α. The same
safety guarantees can be stated for self-collision avoidance
with the QP (35), and changing environments can be treated
similarly if the resulting safe velocity is tracked well. More-
over, a practical advantage of this approach is that robust
tracking yields safety robust to those disturbances.

Proof. The proof follows the same steps as in the Proof of
Theorem 2 with the substitution Ch = Jmax, which is justified
by

∥∥∥∂h
∂q

∥∥∥
2
≤ Jmax based on (29). Furthermore, note that

∂h
∂q v

∗ ≥ −αh(q) still holds due to (32).

With this result, we achieve guarantees of safety that could
not be achieved with traditional methods utilizing the kine-
matics and/or signed-distance approximations only.

IV. SOFTWARE IMPLEMENTATION AND SIMULATION

A. CBF Implementation on Precomputed Trajectories

Assuming the knowledge of a reference trajectory, we
now detail the trajectory safety filter algorithm. The most
straightforward implementation of the QPs (28) and (35) is
to run them in real-time paired with a desired joint velocity
controller that tracks the reference. This can be achieved with
a P controller to the next waypoint i:

vdes(q, t) = KP (q
i
des − q). (38)

For the best results, the error qides − q is heavily saturated to
avoid large values of vdes(q, t) far from the goal. The tracked
waypoint is iterated forwards when the robot gets sufficiently
close

(∥∥qides − q
∥∥
2
< ϵq

)
or stuck (∥vdes(q, t)− q̇∥2 > ϵv for

a certain amount of time).
However, due to the large (∼200 ms) time delay of many

industrial manipulators, it is often desired to instead send pre-
computed time-stamped trajectories, rather than attempting to
track a trajectory online with feedback. The basic algorithm for
generating these safe trajectories, given a cache of previously
computed reference trajectories, is detailed in Algorithm 1.
The cache is filled with hand-picked trajectories that reach the
goal, avoid obstacles, and are visually pleasing, as the public
perception of this robot matters.

There are three fields of interest in the cached trajectories:
the desired behavior B, the manipulator’s trajectory T , and the
collision environment used by the original planner, referred to
as the planning scene P .

The algorithm first assesses the suitability of previously
computed trajectories in the cache. There are two major
considerations: the difference in initial conditions and the
similarity of the planning scene. The suitability of the ith

member of the cache Ci is evaluated by the function:

T i = f(Ci
P , C

i
X0

, P, q) = δiq + δiP , (39)
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Algorithm 1 Trajectory generation in modified collision en-
vironments with safety filters.

Require: C, the cache that contains behaviors Ci
B , planning

scenes Ci
P , and trajectories Ci

X

for each Ci s.t. B == Ci
B do ▷ Search through cache

T i = f(Ci
P , C

i
X0

, P, q) ▷ Compute suitability metric
if T i < T1 then ▷ Reference is extremely similar

X ← CBF(Ci
X , P, q)

return
end if

end for
[Tmin, idx] ← min(T i) ▷ Find best reference
if Tmin < T2 then ▷ Close match

X ← CBF(C idx
X , P, q) ▷ Safety filter

return
else if Tmin < T3 then ▷ Suitable match

X ← CBF(C idx
X , P, q)

C ← X
return

else ▷ Best reference is very dissimilar
X ← Re-plan from scratch
C ← X ▷ X gets added to cache

end if

where

δiq =
∥∥Ci

X0
− q

∥∥
2
, δiP =

∑
o∈O

∥∥Ci
Po
− Po

∥∥ (40)

assess the differences in the initial conditions of the robot and
the collision objects o ∈ O making up the planning scene.

There are three threshold values (T1, T2 and T3) for this
suitability metric. If T i < T1, then the search stops, as the
trajectory in the cache is so close that it is not worth searching,
and the CBF filter is applied. After searching through all
cache members, if T i < T2, then the filter is applied, but the
trajectory is not added to the cache to prevent it from growing
unnecessarily large. If T2 < T i < T3, then the filter is applied
and the resulting trajectory is added to the cache. Finally, if
T i > T3, then the original motion planning algorithm is used,
and the result is added to the cache.

To obtain the joint trajectory X via the CBF, we simply
utilize a trajectory tracking controller like (38) along with the
CBF-QP, and integrate its solution throughout the behavior.

B. Software Implementation and Simulation

Figure 3 shows the simulated cooking environment. The
robot and obstacle representations are a series of meshes de-
scribed by URDF and SRDF files. The position and orientation
of objects are updated before each planning attempt.we

To implement the CBF filter, we require three values to
be computed: the signed distance to the obstacles and other
links sd(q), the normal vectors corresponding to the points
with minimal signed distance n̂(q), and the manipulator Ja-
cobian at these points J(q). The MoveIt framework [14],
an open-source robotics software package for motion plan-
ning, is able to compute all three of these values. Specif-
ically, the distanceRobot() and distanceSelf()

Fig. 3: The simulation environment, which shows the collision
objects and their representations as mesh files. The same mesh
representations are used on the hardware system.

functions of the CollisionEnv class provide the signed
distances and normal vectors needed for environmental and
self-collisions. Moreover, the getJacobian() function in
the RobotState class returns the manipulator Jacobian.
Thus, no other external libraries are required to implement this
algorithm. Once these three values are computed, the OSQP
quadratic program solver [23] is used to calculate the safe
velocity commands, and integration is done manually.

Before hardware implementation, the algorithm was tested
in simulation. The resulting behaviors are described in the next
section, and the simulation results are shown along with the
hardware trajectories in Figure 4.

V. HARDWARE RESULTS

A. Experimental testing environment

We apply the approach described in this paper to one of
the Miso Robotics robotic cooking environments. Specifically,
we utilize a FANUC LR Mate 200iD/7LC robotic manipulator
wrapped in a sleeve, and we send joint trajectories from an
Intel i9-9900KF running ROS.

The cooking environment used in the testing is fully mod-
eled using high-quality meshes used for collision checking.
There are 36 collision objects in total, each represented by
tens to hundreds of mesh triangles. The primary collision
objects of concern are the six baskets, three industrial fryers,
the hood vent over the fryers, and the glass pane separating
the manipulator from the human workers. Of these objects,
the baskets and fryers are the most commonly displaced.

As shown in the figures, the workspace of the manipulator is
very densely crowded with obstacles. To complete a behavior,
it is common to have less than a few centimeters of clearance
between the robot and the surrounding environment. For this
reason, planning methods must be minimally conservative, and
there is no room for any collision buffer.

For experiments, a minimal cache was utilized to highlight
the role of CBFs in re-planning around obstacles. In a commer-
cial setting, with a more populated cache, the CBF would have
many more prior trajectories to choose from, meaning that the
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path modifications would be much smaller. In practice, we find
that the cache size saturates at around 200 stored behaviors,
and we used roughly 10% of that.

B. Hardware results

We test our framework’s ability to safely re-plan on
the two most volatile behaviors: fryer_to_hanger and
hanger_to_fryer, described below. These behaviors see
the most change in obstacle position and initial conditions,
and are the most commonly re-planned behavior.
Fryer to hanger. The fryer_to_hanger behavior moves
a basket from the dipped state to the hanging state. The
manipulator picks up a basket that has finished cooking and
hangs it, allowing the oil to drip off the basket before serving.
Hanger to Fryer. The hanger_to_fryer behavior is the
reverse of fryer_to_hanger, transitioning a basket from
the hanging state to the frying state.

Each behavior is tested in two primary configurations: one
where the adjacent basket is submerged, and one where it
is hanging. For the purpose of this paper, each of the four
testing configurations were run 25 times, each with different
cached trajectories and planning environments, for 100 total
executions. The testing methodology was simple: for each
setup, we first run the CBF on the best matching reference
trajectory in the limited cache, and then we re-plan using
TrajOpt for comparison purposes. Along with the true noise of
the localization of the robot and environment, small amounts
(several mm) of noise was further injected into the initial
conditions and obstacles to ensure that the new trajectory
differed significantly from the cache.

The CBF was able to produce a successful, collision-free
trajectory in all 100 cases, even with the artificially limited
cache size. The average computation time per CBF call was 2
ms, and the average computation time for the entire behavior
was 223 ms. This is a significant improvement compared to
TrajOpt’s average computation time of 5923 ms. The CBF’s
trajectory computes waypoints every 10 ms compared to
TrajOpt’s 64 ms, thus no additional local planner needs to be
used. Two example trajectories from the CBF are visualized
in Figure 4 with the value of h(q) throughout the motion.

VI. CONCLUSION

In this work, we showcased control barrier functions (CBFs)
for utilization in complex, real-world collision environments
in the case of robotic cooking applications. First, we demon-
strated how CBFs applied to the kinematics of robotic ma-
nipulators guarantee safety for the full-order dynamics. Then,
we described the construction of these CBFs for very complex
collision obstacle representations. We proposed an algorithm
for filtering reference trajectories via CBFs to achieve safety
and demonstrated these capabilities in the real-world applica-
tion of frying foods.
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(a) fryer_to_hanger with adjacent basket in fryer.

(b) hanger_to_fryer with adjacent basket hanging.

Fig. 4: Two examples behaviors implemented on the Flippy2 robot. See https://youtu.be/nmkbya8XBmw for video. The large
spikes in signed distance h(q) come from enabling and disabling collision objects when required for interaction, like the basket
when gripping and the fryer when hanging. At the maximum value of h(q), the robot is only 11 cm away from the frame
around it during these behaviors.

https://youtu.be/nmkbya8XBmw
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